Speed and Velocity Walkthrough Worksheet Answers

1. Identify the difference between speed and velocity.

Speed is the rate at which an object travels a distance. It is a scalar measurement which is a measure of size only and not direction. Velocity is a vector quantity that measures the rate at which an object changes position. Size and direction are indicated.
2. On a weekday, you walk 150 m from home to school and then back home again at the end of the day.
a. Calculate the total distance travelled in one school week (Monday-Friday).

Distance travelled in one day:
$150+150=300 \mathrm{~m}$
Distance travelled in one week:
$300 \times 5=1500 \mathrm{~m}$
b. If it takes you 5 min to walk to school, what is your average speed? Give your answer in m / s (metres per second).

Average Speed $=\frac{\text { Distance travelled }}{\text { Time taken }}$
5 minutes in seconds $=5 \times 60=300 \mathrm{~s}$

$$
\begin{aligned}
\text { Average Speed } & =\frac{150 \mathrm{~m}}{300 \mathrm{~s}} \\
& =0.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Your average walking speed is $0.5 \mathrm{~m} / \mathrm{s}$.
3. Complete the following calculations for the two trains below.
a. Calculate the average speed of a train that has travelled 500 km in 5 hours. Give your answer in km/hr.

Average Speed $=\frac{\text { Distance travelled }}{\text { Time taken }}$
Average Speed $=\frac{500 \mathrm{~km}}{5 \mathrm{hr}}$
$=100 \mathrm{~km} / \mathrm{hr}$
The average speed of the train is $100 \mathrm{~km} / \mathrm{hr}$.
b. Calculate the distance travelled by a train in 3.5 hours that is travelling at a speed of $70 \mathrm{~km} / \mathrm{hr}$.

Distance travelled $=$ Average Speed \times Time
$245 \mathrm{~km}=70 \mathrm{~km} / \mathrm{hr} \times 3.5 \mathrm{hr}$
In 3.5 hr the train travelled a distance of 245 km .
4. Describe what is wrong with the statement: I am driving at a velocity of $100 \mathrm{~km} / \mathrm{hr}$.

Velocity is a vector quantity that measures the size and direction of movement. No direction is given above.
5. A beetle travels southwest across a 2 m driveway in 6.5 min . What is the average velocity of the beetle in m / s ?

$$
\begin{aligned}
& \text { Average Velocity }=\frac{\text { Distance travelled }}{\text { Time taken }} \\
& 6.5 \mathrm{~min} \times 60 \mathrm{~s}=390 \mathrm{~s} \\
& \text { Average Velocity }=\frac{2 \mathrm{~m}}{390 \mathrm{~s}} \\
& =5.1 \times 10^{-3} \mathrm{~m} / \mathrm{s} \text { OR } 0.0051 \mathrm{~m} / \mathrm{s} \text { southwest }
\end{aligned}
$$

6. Calculate the average velocity (in m / s) of a cyclist that starts 152 m north of town and after 30 min is 5107 m north of town.

Displacement (change in position) = final position - initial position
5107m north - 152m north $=4955 m$ north

$$
\text { Average Velocity }=\frac{\text { Displacement }}{\text { Time taken }}
$$

$30 \times 60=1800 s$

$$
\begin{aligned}
\text { Average Velocity } & =\frac{4955 \mathrm{~m}}{1800 \mathrm{~s}} \\
& =2.75 \mathrm{~m} / \mathrm{s} \text { north }
\end{aligned}
$$

7. The school cross-country race is coming up and involves running a circuit (start and finish are in the same place), that spans a distance of 4000 m . To prepare for the school cross-country, you must spend many hours training to have a competitive edge. Even though you practise for a few hours each week, your average velocity during the practice is $0 \mathrm{~m} / \mathrm{s}$. Explain how this is possible.

This is possible because during a cross-country race, the start and finish positions are in the same place. This means that your displacement is 0 because your final and initial positions are the same. Velocity is calculated by dividing the displacement by time. As the displacement is 0 , the answer will always end up $0 \mathrm{~m} / \mathrm{s}$.
8. Malakai and Josef walk from Point A to Point C.

Malakai walks the following route, $A \rightarrow B \rightarrow C$. While Josef walks from $A \rightarrow C$ directly. Both boys arrive exactly 30 seconds after leaving Point A.
a. Calculate the average speed of each boy and determine who was travelling faster.

Average speed for Malakai:
Distance travelled = 4+4=8m

Average Speed $=\frac{\text { Distance travelled }}{\text { Time taken }}$
Average Speed $=\frac{8 \mathrm{~m}}{30 \mathrm{~s}}$

$$
=0.27 \mathrm{~m} / \mathrm{s}
$$

Average speed for Josef:
Average Speed $=\frac{\text { Distance travelled }}{\text { Time taken }}$
Average Speed $=\frac{5.7 \mathrm{~m}}{30 \mathrm{~s}}$
$=0.19 \mathrm{~m} / \mathrm{s}$
Malakai is travelling faster at a speed of $0.27 \mathrm{~m} / \mathrm{s}$ while Josef is only travelling at a speed of $0.19 \mathrm{~m} / \mathrm{s}$.
b. Calculate the velocity for Malakai and Josef. Explain why their speed is different but their velocity is the same.

Average velocity for Malakai and Josef:
Displacement (change in position) = final position - initial position
$5.7 \mathrm{~m}-0=5.7 \mathrm{~m}$ southeast

$$
\begin{aligned}
& \text { Average Velocity }=\frac{\text { Displacement }}{\text { Time taken }} \\
& \begin{aligned}
\text { Average Velocity } & =\frac{5.7 \mathrm{~m}}{30 \mathrm{~s}} \\
& =0.19 \mathrm{~m} / \mathrm{s} \text { southeast }
\end{aligned}
\end{aligned}
$$

Speed is measured by calculating the total distance travelled over the time taken. Velocity is measured by calculating the displacement over time. This means that even though Malakai travelled a further distance, his displacement is the same as Josef's. He travelled at a faster speed, but the rate at which he changed position is the same.

Speed and Velocity Walkthrough Worksheet

What is speed?

You would already have a sense of what speed is when you think about one object moving faster or slower than another.

But how do we know which object is faster?

Consider two cars travelling a distance of 20 km .

The first car travelled 20 km in 20 min .
The second car travelled 20 km in 30 min .
Which car was travelling faster? The first car.
How did you know?

The answer lies in your understanding that speed is a measure of distance travelled over the time taken to get there.

Average Speed $=\frac{\text { Distance travelled }}{\text { Time taken }}$

This information doesn't tell you anything about the direction in which the cars were travelling.

Speed and Velocity

Imagine you are travelling from Town A to Town B.
Ordinarily, you would drive the shortest distance to your destination. However, today you come across roadworks and there is an option of a detour.

Your journey would now look like this.

However, the time taken to make this journey was still 30 min , irrespective of the route taken. This means that when travelling the detour route, you were travelling at a faster speed than when you are on your regular route.
If we were to calculate average speed we would use the distance travelled divided by the time taken.

$$
\begin{aligned}
& \text { Average Speed }=\frac{\text { Distance travelled }}{\text { Time taken }} \\
& \text { Average Speed }=\frac{25 \mathrm{~km}}{0.5 \mathrm{hours}} \\
&=12.5 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

However, if we were to calculate average velocity, we would use displacement over the time taken.

$$
\begin{aligned}
\text { Average Velocity } & =\frac{\text { Displacement }}{\text { Time taken }} \\
\text { Average Velocity } & =\frac{2 \mathrm{~km}}{0.5 \mathrm{hours}} \\
& =10 \mathrm{~km} / \mathrm{hr} \text { south }
\end{aligned}
$$

Speed is the rate at which an object travels a distance. It is a scalar quantity. Velocity is the rate at which an object changes position. It is a vector quantity.

Example 1:

You are completing a cycling race that follows a path along a lake as in the image below.

It takes you 4 hr 30 min to complete the 90 km loop.
a. What is your average speed?

$$
\begin{aligned}
\text { Average Speed }=\frac{\text { Distance travelled }}{\text { Time taken }} \\
\begin{aligned}
\text { Average Speed } & =\frac{90 \mathrm{~km}}{4.5 \mathrm{hours}} \\
& =20 \mathrm{~km} / \mathrm{hr}
\end{aligned}
\end{aligned}
$$

b. What is the average velocity?

The starting and final positions are the same. This results in a displacement value of 0 .

$$
\begin{aligned}
\text { Average Velocity } & =\frac{\text { Distance travelled }}{\text { Time taken }} \\
\text { Average Velocity } & =\frac{0 \mathrm{~km}}{4.5 \mathrm{hours}} \\
& =0
\end{aligned}
$$

Example 2:

My cat is pacing at the sliding door. I observed her movements for five minutes and recorded the results below.

a. Calculate the average speed of the cat during these 5 min . Give your answer in m / s.
$1 \mathrm{~min} A \rightarrow B=1 \mathrm{~m}$
$2 \mathrm{~min} B \rightarrow C=0.5 \mathrm{~m}$
$3 \mathrm{~min} C \rightarrow D=1 \mathrm{~m}$
$4 \mathrm{~min} D \rightarrow E=0.5 \mathrm{~m}$
$5 \min \mathrm{E} \rightarrow \mathrm{F}=0.5 \mathrm{~m}$
$1+0.5+1+0.5+0.5=3.5 m$
$5 \times 60=300 s$

Use the formula for calculating speed:

$$
\begin{aligned}
\text { Average Speed } & =\frac{3.5 \mathrm{~m}}{300 \mathrm{~s}} \\
& =0.01 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

We can determine that the cat moved at a speed of $0.01 \mathrm{~m} / \mathrm{s}$.
b. Calculate the average velocity of the cat during these 5 min .

Displacement (change in position) = final position - initial position
$0.5-0=0.5 m$
This results in an overall movement of 0.5 m to the right.
Use the formula for calculating velocity:

$$
\begin{aligned}
\text { Average Velocity } & =\frac{0.5 \mathrm{~km}}{300 \mathrm{~s}} \\
= & 0.002 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

We can determine that the cat moved at an average velocity of $0.002 \mathrm{~m} / \mathrm{s}$ to the right.

Motion Questions:

Make sure to show all of your working out.

1. Identify the difference between speed and velocity.
\qquad
\qquad
2. On a weekday, you walk 150 m from home to school and then back home again at the end of the day.
a. Calculate the total distance travelled in one school week (Monday-Friday).
\qquad
\qquad
\qquad
b. If it takes you 5 min to walk to school, what is your average speed? Give your answer in m / s (metres per second).
\qquad
\qquad
\qquad
3. Complete the following calculations for the two trains below.
a. Calculate the average speed of a train that has travelled 500 km in 5 hours. Give your answer in km/hr.
\qquad
\qquad
\qquad
Calculate the distance travelled by a train in 3.5 hours that is travelling at a speed of $70 \mathrm{~km} / \mathrm{hr}$.
\qquad
\qquad
\qquad
4. Describe what is wrong with the statement: I am driving at a velocity of $100 \mathrm{~km} / \mathrm{hr}$.
\qquad
\qquad
\qquad
5. A beetle travels southwest across a 2 m driveway in 6.5 min . What is the average velocity of the beetle in m / s ?
\qquad
\qquad
\qquad
6. Calculate the average velocity (in m / s) of a cyclist that starts 152 m north of town and after 30 min is 5107 m north of town.
\qquad
\qquad
\qquad
\qquad
7. The school cross-country race is coming up and involves running a circuit (start and finish are in the same place), that spans a distance of 4000 m . To prepare for the school cross-country, you must spend many hours training to have a competitive edge. Even though you practise for a few hours each week, your average velocity during the practice is $0 \mathrm{~m} / \mathrm{s}$. Explain how this is possible.
\qquad
\qquad
\qquad
8. Malakai and Josef walk from Point A to Point C.

Malakai walks the following route, $A \rightarrow B \rightarrow C$. While Josef walks from $A \rightarrow C$ directly. Both boys arrive exactly 30 seconds after leaving Point A.

a. Calculate the average speed of each boy and determine who was travelling faster.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Calculate the velocity for Malakai and Josef. Explain why their speed is different but their velocity is the same.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

